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F O R C E  I N T E R A C T I O N  O F  A S P H E R E  A N D  A V I S C O U S  L I Q U I D  

I N  T H E  P R E S E N C E  O F  A W A L L  

V.  L. S e n n i t s k i i  UDC 532.516; 532.582 

The problem of the force interaction of a vibrating sphere and a viscous liquid bounded from 
outside by a rigid wall at rest is studied under the assumption that the largest displacement of 
the sphere is small compared to its radius and the radius of the sphere is small compared to 
the distance between the sphere and the wall surface. The liquid flow and the force exerted by 
the liquid on the sphere are determined. 

A number of theoretical problems of the motion of a solid body in an ideal liquid under vibration 
have been studied [1-7]. The most important  result of the work performed was the finding of new effects 
in the mean motion of inclusions in the liquid. A natural  extension of studies in this area is concerned, in 
particular, with examining the behavior of solid inclusions in a viscous liquid under conditions similar to the 
ones considered previously. 

In [8], we formulated a principle according to which the main reason for the effects of mean motion of 
inclusions in a liquid under vibration is tha t  the inclusions can move in different directions under dissimilar 
conditions. The validity of this principle is vividly demonstrated by the problem of the motion of a solid 
sphere in a liquid in the presence of a wall. For an ideal liquid, a solution of this problem containing the effect 
of mean motion of inclusions is given in [7] (see also [3, 6, 8]). For a viscous liquid, problems of this kind are 
very complicated. An important  step in the investigation of the effects of mean motion of solid inclusions 
in a viscous liquid is an examination of the force interaction of a solid inclusion and a viscous liquid with 

specified motion of the inclusion. 
1. We consider the following problem. An absolutely rigid sphere is present in a viscous, incompressible 

liquid bounded from outside by an absolutely rigid, planar wall surface. The wall is at rest, and the sphere 
performs specified periodic translational vibrations with period T relative to the rectangular coordinates X1, 
X2, and X3. The  wall surface coincides with the plane X1 = 0. The region occupied by the liquid is contained 
in the half-space X1/> 0. The position of the wall is given by the radius-vector Z = Zel  of the center of the 
sphere, where Z is a periodic function of t with period T and el  --- (1, 0, 0). The  liquid flow does not depend 
on the initial conditions. It  is required to determine the force interaction between the sphere and the liquid, 
i.e., the force F exerted by the liquid on the sphere (the force acting on the liquid from the sphere is - F ) .  

We assume that  r = t /T ,  a is the radius of the sphere, Xl = X1/a, x2 = X2/a, and x3 = X3/a, 
R = V/X 2 + x 2 + x~, p, V, and P are the liquid density, velocity, and pressure, respectively, v = T V / a ,  
p = T2P/(pa 2) u is the kinematic viscosity of the liquid, Re = a2/(vT) is the Reynolds number, T is the 

stress tensor in the liquid, W = (dZ/dt)el is the velocity of the sphere, IV is the largest magnitude of IW], 
oc t + T  

( z ) w =  W / ~ V = w e l  w = R e a l  wrne 2m~ir , 5---IfVT/a, (Z> = ~ Z d t , r  z = Z/ (Z) ,  (q) is 
rn= l t 
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the surface of the sphere described by the equation (X 1 -- Z/E) 2 § X 2 § X i ---- 1, n is the outer unit normal to 
(q), and (Q) is the surface of the wall described by the equation xl = 0. 

The formula for the force exerted by the liquid on the sphere, the Navier-Stokes and continuity equa- 
tions, and the conditions that  should be satisfied on (q) and (Q) and for R -~ (xD have the form 

F = [ I T . n d q ;  (1.1) 

(q) 

Ov 1 
O--7 + ( v ' v ) v = - v p + ~ A v '  V - v = 0 ;  (1.2) 

v = S w  on (q), v = 0  on (Q), v - -*0  as R--~oc.  (1.3) 

2. We assume that  the values of 5 and : are small compared to unity and the values of 5 are small 
compared to the values of :3. We note that  the values of Re are not assumed to be small or large compared 
to unity. 

VVe find an approximate solution of the problem (1.2), (1.3). The approach considered below extended 
the method of [9] for solving the problem of potential flow of an ideal liquid to the problem of viscous flow 
with Reynolds number that  are not small or larger compared to unity. 

2.1 We consider the problem of liquid flow in the absence of a wall. In the coordinate system X~ = 
X: - Z, X~ = X2, X~ = X3 (in which the sphere is immovable), we have 

1 j w  v' 
' �9 - V  Po + ~ee A v o d r  ' " v ~  0; (2 .1)  0r +(v~ V')v;= ' '  ' ' -  ' =  

v~ = 0 for r = 1, V~o--+-5w as r--+ c~, (2.2) 

where v~) = TV~o/a (VPo is the lkluid velocity), p~ = T2(Pg/(pa 2) (Pg is the pressure in the liquid), and 
= = ' = X~/a.  and "' = X~/a) .  , .  v/x? + + (xl X la, . x3 

We assume that  as 5 --* 0, 

, ~ (~V~I) p~ ~ (~p;(1). (2 .3)  V o 

Using (2.1)-(2.3), we obtain 

0V;  (1) __Vtp~l) + 1 A,V~I) dw V ' - v 0  (1) = 0; (2.4) 
0 r  = ~ e  d r '  

Vo [ : ) = 0  for r =  1, v~ : ) - + - w  as r - -*cc .  (2.5) 

The problem (2.4), (2.5) has the solution 

Vo(r:) _ 1 a0o v~(~) = - 1 aVo. (2.6) 
r 2sin0 O r '  rsinO Or '  

oL o: cos  
p0 ( : ) =  {[  070r+R---e(Or 3 r2 Or + ~ o -  -d--~-T rsin2 Jsin20 +co,  (2.7) 

where 

l { _ w r  2 §  ~ - - [  m=l qm qmr -- ~ Je .~ sin2 0 r 

[qm = (1 + i)v'mrrRe and Kt/2  and K3/2 are the Macdonald functions], 0 is the angle between the vectors 

(1,0,0) and (x i,  x i,  x~), v 2  ) and v ~  ) are the r- and P-components of the vector v0 (:), and co is a function 
of r .  

2.2. We convert to the coordinates X1, X2, and X3. We determine the error that arises in the plane 
x~ = 0 when v in the condition v = 0 for Xl = 0 is replaced by 5(Vo (:) + w).  According to (2.6), we have 
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where 

 (vo (') .9 = r (2.8) 

Using (2.9)-(2.11), we obtain 

V c = - 6 ( ~ V X + ~ )  for x l = 0 ,  vc--*0 as R ~ o c ,  

where vc = T Y c / a  (Yc is the liquid velocity) and Pc = T2Pc/(pa 2) (Pc is the liquid pressure). 
We assume that  as 6 --* 0, 

Vc ~ 6v (1), Pc ~ 6P (1). 

0V(c 1) _ _ V p ( c l ) .  9 1 AV(1), 
Or = Wee 

�9 V~C 1) : 0; 

v~ 1) = - V x  - ~ for x l  = 0, 

In (2.12), (2.13), we make the substitution 

where 

As a result, we obtain 

V~ 1) ~ 0 as R --+ oc. 

V (1) = V* "9 VX*, (2.14) 

Z "9 ~Xl 
X* = e2A [(z + exl) 2 + ~2(x~ + z~)]3/2" 

Or* _ _V(p(1 ) -9 cOX*'~ 1 
Or -- -0-~'~ ] + ~ee Av*, V- v* = 0; (2.15) 

v* = -V(X .9 X*) - ~ for xl  = 0, v* --* 0 as R ---* ec. (2.16) 

The problem (2.15), (2.1) has the following solution, which satisfies the first condition of (2.15), the second 
condition of (2.15), and the first condition of (2.16) with accuracy up to ca, x3, and ca, respectively, and 
rigorously satisfies the second condition of (2.16): 

V 1 ~--- O~ 

�9 3~4X L oo 2 + 3q,~ + 3 
V L = [Z 2 + e2(X 2 + X2)]5/2 Real E wmqm 

rn~-I q2 
e -q'~xl-F2rn~rir (L  ~- 2, 3); 

(2.17) 

OX* 
p(1) + ~ = co ,  (2.18) 

* V *  * where vl, 2, and v 3 are the xl-, x2-, and x3- components of the vector v* and Cc is a function of T. In view 
of this, the problem (2.90, (2.10) has solution (2.14), (2.17), (2.18). 

The expression for 6(v0 (1) + w .9 v (1)) given by relations (2.6), (2.14), and (2.17) satisfies the condition 

6(V~ 1) .9 W .9 V (1)) ---- 0 for X 1 ~- 0 with accuracy up to 6e a .  
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

1 z - ~ x l  ( oo q2 .93qm+ 3 ) 
X = E 2A [(z - ~ x l ) ~ ' + - - ~  2 + ~:2)]3/2 A = Real ~ Wm m e2mTrir 

m=l q2m 

and ~ is a small quanti ty compared to e a (a is any positive number). 
We consider the following problem of liquid flow in the absence of a sphere, whose solution compensates 

for the error (2.8): 

OVc 1 
0r  + (Vc �9 V)Vc = -Vpc  + Ree Arc ,  V .  Vc = 0; 



2.3. We convert to the coordinates X~, X~, and X~. We determine the error that  arises on the sphere 

r = 1 when v - 5w in the condition v - 5w  = 0 for r = 1 is replaced by 5(v0 (1) + V(cl)). According to (2.6), 
(2.14), and (2.17), we have 

5(V~1) q-V(1))r=l = 5[ (~7X*) r=l -~ ~']'  (2.19) 

where ~' is a small quantity compared to xa ' (a  ' is any positive number). 
We consider the following problem of liquid flow in the absence of a wall, whose solution compensates 

for the error (2.19): 

Ovlc 1 _ d w  ~7' 
o7- + (v" �9 v ' ) ~ "  = -V'p~'  + ~ A ' ~ '  - ~ d~ ' " ~c' = 0; (2 .20)  

v c' = - 5 ( V k * + ~ ' )  for r = l ,  v c' --~0 as r ~ o c ,  (2.21) 

where v~. = T Y c / a  ( V  c is the liquid velocity) and Pc = T2pg/ (P  a2) (P~ is the liquid pressure). 
We assume that as 5 --~ 0. 

' ~ 5v'(1), Pc "~ 5Pc ('). (2.22) V c  

Using (2.20)-(2.22), we obtain 

Ov~" _ _ v ,  c(~) + • ~ ,  C(~) e ~  v ' .  v c(~) = 0; (2 .2a)  
0v Re dr  ' 

VC (1)= --VX*--~ '  for r = 1, VC (1) ---~ 0 as r--* oo. (2.24) 

The problem (2.23), (2.24) has the solution 

1 0~Pc ,(1) 1 0~'c. (2.25) 
c~(~})-r2sin0 0 0 '  V cO = r s i n 0  O r '  

0 2 1 ( 0 3 2 0 4 
. . . .  rsin" 0 ~  + cc, (2.26) 

-~7 J sin z 0 

which satisfies the first condition of (2.24) with accuracy to ~3 and exactly satisfies (2.23) and the second 

condition of (2.4). Here 

~Pc = ~-~ ~ Real Z wm q3, L q m r  - -  [(1/2(qm) J 
sin 2 0 

rn=l 
and Cc is a function of T. 

The expression for 5(Vo (1) + v (1) + v~ 1)) given by formulas (2.6), (2.14), (2.17), and (2.25) satisfies the 

condition 5(Vo (1) + v~ 1) + vc (1)) -= 0 for r -= 1 with accuracy to 5e 3. 
2.4. According to the aforesaid, the problem (1.2), (1.3) has an approximate solution given by the 

formulas 
dw 

v :  + + + + + + + (2.27) 

and (2.6), (2.7), (2.14), (2.17), (2.18), (2.25), and (2.26) (c is a function of 7). This solution satisfies (1.2) 
and the first two conditions of (1.3) with accuracy to 5~ 3 and exactly satisfies the last condition of (1.3). 

3. Using (1.1), (2.6), (2.7), (2.14), (2.17), (2.18), and (2.25)-(2.27), we obtain 

2~a3pl?V ~ dw X-'~ m w m  qm + l e2m~i ~ 
F -- 3T [ d T -  187r Imag ZL, q---~m 

rn----1 

oo m w m  q m  q- 1 [ 2 3 + ~  [ - ~ - 1 2 7 7 I m a g  Z - - ' ~ m  ~ q m + ~ q m +  e2m~ir]}el. 
rn= l 

(3.1) 
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Formula (3.1) gives the force interaction between the sphere and the liquid. 
From (3.1) it follows that  for ~ = 0, 

3T -~z - 187r Imag m ' W m ~  e 2rnlrir el. (3.2) 
m=l  qm 

Formula (3.2) is in agreement with the formula of [10] for the force acting on a solid sphere from a viscous 
liquid that  is unbounded from outside. 

4. The above approach to determining viscous flow ~-ith an inclusion in the presence of a wall is 
suitable for studying the effects of mean motion of inclusions in a viscous liquid. It can be used, in particular, 
to investigate the effect of the viscosity of a liquid on the paradoxical equilibrium of a solid inclusion present 
in the liquid and the "levitation" of the inclusion under vibrating actions on the liquid [1, 3, 7]. 
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